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A description is given of a view factor technique for solsing time-dependent. non-linear 
radiative transfer problems. It is believed unique among view factor methods in having the 
ability to solve problems involving gases or plasmas with emissive and absorptive charec- 
teristics i~hich vary in space and time. The radiative characteristics of :he emlosing surfaces 
can aiso have an arbitrar! space and time dependence. and these characterisrics can be 
updated based on an appropriate physical model of the interaction of the background radia- 
tion field with the medium. Various sample problems are sclved, in&ding a time-dependent 
soknion for concentric spheres fiiled with a participating medium of arbitrary opacity for a 
Step fiincrion source. i 1940 Academic Prcns. Inc 

1. INTRODUCTION 

View factor techniques, which have typically been applied to steady-state 
radiative heat transfer problems in the past. have recently been used successfu‘ully 
[I, 2, 31. to soIve time-dependent radiative transfer problems. Such methods. in 
general, involve the subdivision of given surfaces into small surface elements, either 
manually or with the aid of a computer algorithm, the specification of the radie:i;e 
characteristics of the surface elements so generated, and the modeling of the 
radiative transfer between the surfaces with the aid of view factors. They can be 
applied where complex radiation source dependence on time and space make 
application of competing methods. such as Monte Carlo, extremely costly in terms 
of computer time and memory. Alternatively, they can be used to provide quick 
iterative solutions to steady-state or near steady-state problems in situations 
involving complicated geometries and source functions. 

Unfortunately, to date the use of view factor techniques and computer codes has 
been hmited mainly to situations in which there is no participating medium, sirch 
as a gas or plasma. For vacuum problems, the fraction of radiation emitted by ace 
diffusely emitting surface which eventually strikes another surface is merely- a f~nc- 
tion of the source strength at the emitting surface and the areas and orientations 
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of the two surfaces. If some intervening medium is included, however, it is necessary 
to know not only the emissive and absorptive characteristics of the medium and 
how it varies over some large number of time steps, but how these characteristics 
are affected by the radiation field. Furthermore, some technique must be developed 
for determining the contribution of the medium to beams of radiation as they pass 
from one surface to another. If the realistic assumption is made that the medium 
is non-homogeneous, and its characteristics can vary more or less drastically 
throughout the problem space, the complexity of the problem is evident. 

Here we describe a view factor method which includes the effects of participating 
media in time-dependent radiation transport calculations, and the results obtained 
in applying the method to various sample problems with the aid of the RAYNA II 
view factor code. 

2. VIEW FACTOR FUNDAMENTALS 

Given two differential surfaces &t, and dA, separated by a distance r, the rate 
at which radiation leaving dA, strikes dAA2 is [4] 

dq,_2=I,cos8,dA,d~,-,, (1) 

where I, is the intensity of radiation from dA,, e1 is the angle formed by the normal 
to dz4, and the line joining the two surfaces, dA, cos 8, is the projection of area 
element dL4 I as seen from dA,, and dw I _ 2 is the solid angle subtended by d,4, as 
seen from dA I. Since emissive power E is related to intensity 1 by 

E=nI (2) 

and since 

where O2 is defined similarly to Q1 and r is the distance between the two surfaces, 
one has 

dq,-z=E, dA, 
COS 8, COS e2 dA, 

772 (4) 

The term in parenthesis in Eq. (4) is the fraction of radiation from surface dA, that 
strikes surface dL4,. Then, for two macroscopic geometrical surfaces A, and A,, one 
can write 

.41F,-2= * J i 
- c0se,c0se, 

- dA, dA2, 
4, A2 7tr’ 

where F, _ 2 is called the view factor evaluated on the basis of area A,. 
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Typically, users of view factor computer codes approximate the differen5al 
surface elements described above by subdividing the surfaces which make ;?p a 
problem into some chosen number of elements of approximately equal area, either 
manually or automatically with the aid of a computer algorithm. The actuai 
number of elements employed can normally be specified by Ihe user, !imited b;; 
machine speed and memory constraints. The set of geometric surfaces presently 
available to RAYNA II users includes disks, cylinders, cones, spheres, and varkus 
derivatives thereof. The algorithm for subdividing these surfaces into smailer 
elements is similar in all cases. First, the surface is divided into rings. which are 
further subdivided into elements, as shown below for the case of a disk (Fig. i 1. 

Obviously, the rings into which the disk has been subdivided by the code, as 
shown in Fig. lb, all have a common axis of symmerry, in fact. the code wiEi 
ger,erate such axisymmetric rings in the process of breaking down al? of the other 
surfaces in its repertoire, a circumstance which will prove useful in exploiting 2D 
symmetry when it exists. 

At this point surface-to-surface view factors between the e!ements must be 
calculated. Readers interested in the details of such calcciations may constilt 

efs. [4 or 51, which contain a review of view factor techniques. .A check must be 
made to determine if the optical path between any pair of elements is obstructed by 
an intervening surface. in which case the view factor between the elements is rr;set 
to zero. 

The time dependence of the problem is modeled by causing the calcuiation to 
proceed ig discrete time steps. Once element to element view factors hzve beer: 

a. Original Object b. Step 1 Code divides 
object into rings 

c. Step 2 Code begins d. Step 3 Process of region 
dividing rings subdivision into 
into elements elements is complera. 

Fro. i RAYNA II Algorithm for region subdivision as applied to 2. disk. 
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computed, solution of the radiative transfer problem consists of determining the 
contribution of each of the elements to every othe element in the problem during 
each time step. If it takes light II time steps to travel from element j to element k, 
the radiation contributed by j to k in a time step will be 

EjL = Sj[(N-n) dt] Aj Fjk dt, (6) 

where Eik is the radiative energy contribution of element j to element k in the time 
step in ergs, N is the number of time steps since the beginning of the problem, 
Sj [(N -- n) dt] is the radiative source strength of elementj during time step (N-n) 
in ergsjcm2-s, Aj is the area of j, Fjk is the view factor from j to k, and 4t is the 
time step size. Radiative source strength, S,, is recomputed every time step based 
on the total amount of incoming radiation and user-declared boundary conditions, 
including surface albedo or reflectivity and legislated or computed surface source 
strengths. Evidently, one can solve the vacuum problem by retaining in memory the 
radiative source strengths for some number of time steps equal to the time it takes 
for light to travel between the two most distant elements in the problem, the 
element areas and the view factors between each pair of elements which are visible 
to each other. In essence, one keeps track of the “bundles” of radiation mentioned 
earlier as they pass along rays from element to element. This strategy has been used 
successfully to provide time-dependent solutions for vacuum problems [ 1,2]. 

3. THE TRANSPORT PROBLEM WITH PARTICIPATING MEDIA 

If participating media are included, the simple treatment of radiation transport 
described above is no longer adequate. One must not only determine what fraction 
of radiation from one surface element is emitted in the direction of another surface 
element, but what happens to the radiation as it passes through the intervening 
material. As a minimum, one must set up some sort of volume mesh and specify the 
emissive and absorptive characteristics of the material at each mesh point. If a 
multi-group treatment is necessary, this must be done for each radiation energy 
group. A volume element of known volume must be associated with each mesh 
point, and an algorithm must be provided to update the physical characteristics of 
the medium in each element as it emits and absorbs radiation. Finally, one must 
calculate what volume elements a beam passes through which was emitted by one 
surface element in the direction of another surface element, and the proportion of 
the total path length between the two surface elements which is traveled in each of 
these volume elements. 

Generation of a Volume Mesh 

Generation of a volume mesh is accomplished with the RAYNA II code as 
depicted in Fig. 2. First, the code finds a 2D outline or cross section of the problem 
space. A 2D mesh is set up on this outline by stepping along the axis of symmetry 
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a Gr\ginal object b Genera!!on of an otitline 

c Generailon of a 2-d mesh d Geners;~on o: 3-d volume mesh 

FIG. 2. Generation of a is~umr mssh. 

of the problem space in increments whose length depends on a user-defined resoh- 
tion factor. At each point along the axis, perpendicular rays are generate 

oints are spaced along all segments of these rays that are found to be inside the 
roblem space, When the entire 2D mesh has been generated, each point is rotared 

about the axis of symmetry, defining new mesh points at appropriate intervais 
during the rotation, resulting in a 3D mesh. Each of the set of mesh points 
generated in this way by one of the points in the 2D outline belongs to a skgie 
identifiable volume ring whose axis is the same as the overall axis of symmetry 
mentioned above. This circumstance will be used later in taking advantage of the 
symmetry of the problem. 

The volume assigned to a volume ring is simply a function of its width and the 
radius of the inner and outer boundaries of the ring. Each volume element In the 
ring is assigned an equal volume appropriate to the total number of elements in the 
ring. 

One must next address the problem of handling emission from and absorption m 
the various volume elements. In order to simplify this rask, it is assumed that ek 
probiem space is completely enclosed. An understanding of the advantages of using 
completely enclosed geometries may be gained by considering an enclosure com- 
posed of some chosen number of discrete surface elements, as shown in Fig. 3 La] 

The incoming radiation at surface k is equal to the sum of the contributions from 
ah the other surfaces after allowing for absorption in the intervening medium, p!us 
the contribution due to emission from the gas. In the figure the radiation path 
between k and another surface j within the incident solid angle &o, is shown. If ene 
contributions from all of the other surfaces, including that from surface k i! it 15 
concave, are determined by following the paths between r’ne surfaces; the solid 
angles swept out will encompass all of the gas or plasma that can radiate to surfa.ce 
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FIG. 3. Gas tilled enclosure with discrete surfaces. A typical path from area j to area k is shown. 

k. Thus, if the contribution of gas emission at all points along the path between two 
surface is taken into account for all surfaces, the gas emission for the entire volume 
will be automatically accounted for. This obviates the necessity for complicated 
schemes which attempt to handle volumetric emission and absorption as charac- 
teristics of individual volume elements. Such schemes normally lead to serious 
problems due to memory constraints. Instead, the fraction of radiation emission 
originating in a volume element that should be contributed to each surface element, 
as well as the amount of radiation in a bundle passing between two surface 
elements that should be absorbed as it passes through a volume element in its path, 
can be calculated in advance and assigned to an existing ray between two surface 
elements. 

To see how this is accomplished, let us first consider the question of emission 
from the medium. The fraction of the total radiation emitted by each volume 
element in the problem to each surface element must be calculated. It is assumed 
that the volume elements emit isotropically, although prescription of some angular 
dependence is not out of the question, just as an angular dependence of some sort 
might be postulated for the emissive and absorptive characteristics of the surface 
elements. The contribution from volume element a’ in the direction of surface 
element k in a time step will be 

E,., = S,, C’,.( (Ak cos O)/T,.~‘) At, (7) 

where E,,, is the radiant energy contribution in ergs from volume element a’ to sur- 
face element k, S,. is the source strength of volume element a’ in ergs/cm3-s, V,,, is 
the volume of element a’, Ak is the area of surface element k, 19 is the angle between 
the normal to the surface element and the line between the centroids of the volume 
and surface elements, and Y,,~ is the distance between the elements. Once the con- 
tribution of a volume element to a surface element has been found, the contribution 
is assigned to one of the many bundles of radiation passing between the given sur- 
face element and all the other surface elements in the problem. These bundles are 
the same ones we have described above in the context of vacuum problems. The 
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Contribution of voiume element a’ to 

F:G. 4. Representnrive surface element to surface element rays. The radiative conrribuiaon km 

ioiume tiemen: LI’ to surface element k is assigned to a bundle on the nearest ray between ekmenz : 
and k. 

paths the bundles take between surface elements, which I will refer to as xys, 21e 

generated as a by-product of view factor calculations which have been done earlier 

by :he code. AI1 radiation in the problem, including that generated by the medium. 
is assumed to rravel along one of them. The appropriate volume and surkxe 

ziements and some of the rays are shown in Fig. 4. 
At this point it may be pointed out that there is no need to store in memory i3e 

contribution of each volume element to each surface element. The 2D symmetry or’ 

the probiem space makes it possible to treat the contribution of volume elements 
as ;I pOrKiOn of the contribution of the volume ring to which they belong. Figure 5 

illustrates this point. Obviously, the contribution of radiation from volume ring .d’ 
to any element on surface ring K will be identical as long as the elements are of 

Surface Ring K 

FIG. 5. Contribution of a volume ring is equal to each of the elements of; surface rmg 

581,87!1-6 
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constant size. Furthermore, rotating the volume ring about the axis of symmetry 

will not change this contribution, even though individual volume elements are 
moved about because, thanks to the 2D symmetry of the problem, each volume 

element in a ring radiates identically. 
Further memory savings are realized by taking advantage of the symmetry of the 

surface rings. Since the radiation received by each surface element in a ring from all 

sources will be identical for every element in the ring, we need only consider one 
element per ring as a receiving element. In short, one artificially converts the 
intrinsically 3D view factor method to 2D for the sake of conserving memory. 

Now let us once again consider the bundles of radiation passing along the rays 
between surface elements. Each of these bundles can be identified unambiguously 

by specifying the sending element, receiving ring, and the number of time steps that 
light must travel to reach the location of the bundle. So far, however, we have not 

considered how to let the code know which volume rings will contribute energy to 

a bundle in a time step and how much they will contribute. At first glance, this 

seems an almost insurmountable problem in terms of storage requirements. 
Apparently, we must create an array large enough to contain an identifier for the 

volume ring, sending element, receiveing ring. and time step. For a simple problem, 

assuming reasonable resolution, one might have 200 volume rings, 250 sending 
elements, 50 receiving rings, and 50 time steps between the two most distant surface 

elements. Then one would need two or three arrays with (200 x 250 x 50 x 50) or 
125 million words reserved for each. Such memory demands may not seem 

unreasonable in a few years, but at present they are beyond the capabilities of most 

machines. 

Suppose we could assume, however, that the volume elements are sufficiently 

large and the time steps sufficiently short that a bundle can only pass through 
portions of three or four volume elements in a time step. One could compute in 

advance which volume elements contributed to which bundles and use this informa- 
tion to reduce memory requirements. This strategy is used in RAYNA II. 

To illustrate the procedure, let us consider the energy emitted from volume 
element n’ in the direction of surface clement k. From Eq. (7) we know the actual 

quantity of energy involved for a given volumetric rate of emission. Since this rate 
may vary with time, a more appropriate quantity to store is the fraction of the total 
energy emitted from a’ in a time step which is initially directed toward element k. 
We know the equations of the rays from all the surface elements to element k and 
the location of volume element a’. The energy contribution from a’ is assigned to 
the closest ray to the volume element. The actual point on the ray where the energy 
from a’ should start contributing is, of course, the nearest point on the ray to the 
volume element. The approximate location of this point is stored in memory as 
some number of time steps from the sending surface element, the distance light 
travels in a time step being assumed constant. As mentioned earlier, we assume that 
a bundle on any ray can only pass through portions of three or four (or some larger 
number, memory allowing) volume elements in a time step. Space in memory is 
reserved for these three or four contributions. If the contribution from a’ is the first 



to the bundle for the given time step, it is assigned to the firsi, of these spaces, ani 
so en. If all the three or four spaces on the ray are taken, RAYNA II first checks 
to see if memory is still available. If so, it generates a n ew ray through the volume 
clement a’ to surface element k. A “virtual sending element,” jr is declared at he 
point along the ray from k in the direction of u’ at which it intersects some orher 
point on the surface. This virtual surface element cannol emit radiation, and serves 
only as a starting point for the ray. In this manner, it is possible to achieve h;gh 
resolution at points of interest in the medium where the user might choose to re%-,P 
the volume mesh. If memory is exhausted, RAYNA II checks a set of -0 next- 
nearest aiternate points to assigne the radiation from a’, If ail these are also fo~n3 
to be full, it declares the array space exhausted and stops the run. 

Let us next turn to the task of dealing with volumetric absorption. Suppose we 
have some physical model for determining absorption coefficients in the medilum. In ^ _ 
addition. to finding the identities of the volume elements through which a bundle 
passes in a given time step, a problem we have already dealt with in. solving the 
emission problem. one must find the path length of each bundle of radiation in 
these elements. With this information, one can calculate the amount of en.ergq’ 
absorbed in each volume element per time step. We know the fixed distance light 
travels m a time step. ds, and the number of volume eiemen% through which 2. 
bundie passes in a given time step. Some fraction of 4s. then, must be assigned 
as the path length in each of the elements. These Eractional path lengths ax 
determined as follows. 

Radiation can travel from the emitting to the receiving element along any ra) 
which intersects both elements at any point on their surfaces. Taken together, these 
rays generate a volume or “sheaf” inside which all rays traveling between the 
elements must remain. Assuming constant emission over the surface :of the cmi~ing 
element and that the surface elements are sufficiently small? radiation intensity from 
the sending to the receiving element within this sheaf is constant, The inhersec:io?; 
of the sheaf volume with that of a volume element. then. sho~uld be prcporGona1 :S 
he time radiation, between the two surface elements, spends in the s-olume slemecl 
and, therefore, to the desired fractional path iength. To facilitate ;he ca?cula~&ons, 
the sheaf volume is approximated by that of a cone -with cross sections at the senti- 
ing and receiving elements equal in area to the projections of i e surface elemerr 
areas on the plane normal to the line connecting the surfac, p elements. The ~nrersez- 
tion of the volume of this cone with that of the v-olume elements encountered in a 
given time SE;, is determined, and the sum of these quantities is normaiized to one, 
giving the fraction of the total path length spent in each of t e wAume elemenis. 

Energy absorbed in a volume element, a’. from a bundle7 B, may men be given 
as 

ITabs =EB( 1 -exp:; -c(,, FJa’) ds)), a i ( 0 I 

ibbere E e is the total energy in the bundle, x,,. is the absorption coeficient in 2’ in 
units of cm I, and F&a 1 is the fractional path length in elemenf a’ as calculated 
above. 
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At the moment, scattering effects are not included in the RAYNA II code. 
However, isotropic scattering could be modeled easily as absorption followed 
by instantaneous isotropic re-emission. Non-isotropic scattering would be more 
diflicult, but certainly not impossible to handle. 

To get a better picture of how the algorithm works, suppose the surfaces defining 
the problem have been broken down into surface elements and the intervening 
medium has been divided into volume elements. Two arbitrary surface elements, i 
and j, and the ray between them, are shown in Fig. 6. 

The ray is divided into segments, with each segment representing the distance 
traveled by radiation emitted by element i as it passes along the ray to element j 
during each succeeding time step. The length of each segment except the last is, of 
course, ds, the distance light travels in a time step. At the beginning of each new 
time step, one starts at the beginning of the segment, which we shall call segment 
n, nearest to the receiving surface element, j. The amount of energy in the bundle 
which arrived in segment n from segment n - 1 during the last time step is known, 
as is the total emission in each of the rings, and the absorption coefficients therein. 
Also known are various quantities which are a function of the geometry of a given 
problem: such as the identities of the volume rings through which the bundle must 
pass before it arrives at surface j, the fraction of the total emission from each of 
those rings which the bundle is to receive during the time step, and the path length 
of the ray through the rings. These “previously determined” quantities can be com- 
puted once and for all at the start of a run or even stored in tables for geometries 
run repeatedly and will only change if the problem boundaries are altered. With the 
aid of the above information, we can determine what happens to the bundle at the 
start of segment n, which we will identify as bundle B, as it passes along the ray 
to receiving surface j. Suppose volume ring A’ is the first one encountered by the 
bundle. The identity of the ring and the fraction, f,(A’, B), of the known total 
energy? &,,(A’), which it emits during the present time step which should be 
contributed to the bundle, have already been determined as described above. 
The energy contributed by the ring to the bundle, then will be 

(9) 

The energy &‘,,_(A’. B) which should be absorbed in ring .4’ from the bundle can 

FIG. 6. Typical ray between surface elements. 
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be derived from the known number of elements in the ring and Eq. (8) above. As 
bu.ndle B passes through ring cl’, then, one sets the energy in the bundle E, to 

A similar procedure is followed for each of the other volume rings that the bundie 
encounters on its path. 

The procedure is altered somewhat to deal with optically thick regions. At the 
beginning of each volume ring encountered, the path through the ring is broken 
down into segments of not greater than one tenth of a mean free path in length. The 
calculation is then carried out as outlined above with the exception that absorptlcn 
from and emission into the bundle are updated at the end of each of these segments 
insread of at the point where the bundle leaves the ring. In this way, errors due to 
excessive self-absorption in a ring are avoided. 

Having dealt with the bundle passing through segmenr yi, one next turns ;o the 
bundle which must traverse segment f~ - 1 and update its energy content in a 
similar fashion as it passes along the ray to segment K. This becomes the new 
bundie energy at the start of segment n for the next time step. One iterates back- 
wards along the ray in this fashion until one reaches surface element i. The energy- 
of the bundle as it leaves this element is computed based on the known surface 
emissivities, reflectivities, and the amount of radiation received from all the other 
elements during the last time step, as well as th, p view factor from surface element 
i to element J, and it is updated as it passes along the ray through segment ! just 
as was done for the other bundles. This procedure is then followed for all the o&er 
pairs of surface elements in the problem which are visible from each other. after 
updating volumetric and surface radiative characteristics. one is then ready to 
proceed to the next time step. 

One can get some idea of the memory requirements of the method by consideri.ng 
the problem of iabeling each of the volume rings which is to contribute to a given 
bundle during a time step. First, of course, one must know which time step. Tnfor- 
mation must be retained for the number cf time steps it takes for a bundie to oass 
along a ray between the two surface elements which are most distant from each 
other. We will assume 30 time steps is sufficient to resolve the time dependence of 
the probiem. Next, one must identify the seriding surface element and. the recarving 
surface ring. Suppose the problem has been broken dowrn into 300 surface elements 
and 30 surface rings. Finally, one must know in what order the bundle is to encnun- 
ter the volume rings as it passes along the ray. Let us say a maximum of 5xn= sue.? 
rings may be encountered by any bundle in a time step. We mus: then reserve 
30 x 300 x 30 x 4, or over one million words of memory to store the array. Two 
more arrays ol similar size are needed to store the path lengths of the bundle in 
each of rhe volume ring it encounters and the fraction of th, ‘i- total emission of the 
ring which should be contributed to the bundle. These three arrays ale the largest 

needed by a considerable margin, and it has been found that problems of 
reasona’ole complexity can be solved with a total available memory of arounei r‘eilr 



84 DOUGLAS J. DRAKE 

million words. The sample problems described later in this paper required around 
two million words. 

Although the geometry used in RAYNA II is somewhat involved, the concept is 
simple. One simply follows bundles or packets of radiation through materials and 
between surfaces of known radiative characteristics. The physical transparency of 
the code makes it possible to apply complex boundary conditions easily. 

4. SAMPLE PROBLEMS 

Assuming gray conditions, the radiative flux from a hemispherical body of gas to 
an area at the center of its base is [7] 

q= [l -exp(-c&)1 eb, ill) 

where c( is the absorption coefficient of the gas in cm-‘, R is the radius of the 
hemisphere, and eb is the blackbody emissive power in ergs/cm’+. The simple form 
of Eq. (11 j for hemispheres has led to the definition of so-called “mean beam 
lengths” for other geometries. These are approximate values of R which give correct 
values of q for a particular geometry. We will agree with the notation of Ref. [7] 
in letting L, represent mean beam length. Approximations of L, for numerous 
geometries are available in the literature. For a geometry with mean beam length 
L,, then, 

q= [l -exp(-aL,)] eb. (12) 

Since one more often deals with volumes of gas which are in thermal equilibrium 
with some given absorption coefficient than with black media, we will use 

d’Q, = 4ire, dV d2, (13) 

TABLE I 

Values of Mean Wall Flux for a Hemisphere to the Center of Its Base 

Absolute coefficient 
il (cm-‘) 

Mean flux 

Analytic Code 

l.OE-5 2.50El 2.64E1 
l.OE-3 2.38El 2.48El 
5.OE-3 1.97El 2.02El 
l.OE-2 1.58El 1.57El 
5.OE-2 4.97m 5.02lXl 
l.OE-1 2.5om 2.52Eo 

Nore. Emissive power of medium equals 1 erg,‘cm’-s. Flux in units of 
erg/cm’-s. 



where d’Q, is the energy emitted by a volume element in equilibrium with Its sur- 
ro~undings. For a small volume in a gray medium of known absorption coefficjen: 
and emissive characteristics, we can approximate eh, then, as 

where Q is volumetric emissive power in ergs;‘cm’-s. 
In what i"~ilows, the fixed value Q = I is iegislated and the absorption coeffic!ent 

is varied. The a.pproximate value of eb from Eq. (14) is used in Eq. (12) to ?nd /;. 
Values of y found in this way are compared with RAYNA 13 results Car <tic; 
different geometries in Tables I and II: nameiy, the cases of a hemispherical bcd~ 
of gas radiating to the center of its base and a circular cylinder of height equal tc 
its diameter radiating to an element at the center of its base. Beth geome’.rizs are 
shcwc in Fig. 7. 

The results for a hemisphere of gas radiating tG a point at the center of its base 
shown in Table I were obtained for a hemisphere of radius 100 cm. The base of the 
hemisphere was composed of a ring of outer radius 100 cm and inner radius 1 cm 
axi a disk of radius I cm to serve as the “differential” area at the center of the base. 
The hemisphere and ring were divided by the code mto 50 and 60 e!ements. respec- 
trveiy, and the volume was broken down into 52 rings with a eotai 2:’ 1073 volunie 
elements. T&a-e were 30 time steps between the tva ‘0 most distant surface efemen!s 
in he problem. All problems were run in single precisicn, with the exception of a 
few variables for which better accuracy proved indispensable. 

In Table Il are shown the results for a cylinder of height equal tc its dtawetz. 
D. radiating to an element at the center of its base. In this case; four slurface region5 
were used: a cylinder, a large disk at the top, a large ring at the bcitom, ark! a 
small disk at the center of the bottom ring from which the results were obtained. 
The cylinder, large disk, and large ring were divided in;0 so surface eiemen~s and 
rhe small disk was divided into four. The problem space was broken down inro 65 

Values of Mean Wall Flux for a Circular Cylinder of Hcigkt Eqcal to Dizmekr, 2, 
Radiating to an Element at the Cenis: of Its Ease 

Abso!i~te oefficient R 
a ;cm-‘i 

I.OE--5 
1.QG-3 
TOE-3 
l.OEm-? 
5.OE--2 
IDE-2 

h’me. Q = 1 erg cmj-s: flus in units of ergs.cm’-s 
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a. Hemisphere radiating 
to its base 

b. Circular cylinder radiating 
to its base 

c. Concentric spheres 

FIG. 7. Geometries for sample problems. 

volume rings with a total of 1155 volume elements. There were 35 time steps 
between the two most distant surface elements in the problem. Mean beam length 

for this geometry is given as 0.77D for optically thin gases, decreasing to 0.71D for 
media of significant optical thickness. Mean beam lengths used in the code are 

shown on the table. 
The problem of concentric spheres, also shown in Fig. 6, is presented as a 

demonstration of the method’s ability to handle time-dependent solutions. In par- 
ticular, let us consider the case in which the surface of the central sphere begins 
radiating at some constant strength at time t = 0. One wishes to solve for the time- 
dependent, radially outward directed flux at the surface of the outer sphere. 
Analytic solutions to the vacuum problem are available in the literature [Z] for the 
case in which the central sphere has become so small it may be approximated as 
a point source. To my knowledge, non exist for the case of a participating medium 
with arbitrary absorption coefficient other than those presented in Table III and 
Fig. 8 below. These results are for inner and outer sphere radii of 0.1 cm and 
100 cm, respectively. 
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The results are expressed in terms of I,., the light travel time across the outer 
sphere, and SO, the effective radially outwardly directed source strength at the sur- 
face of the outer sphere. Surface albedoes jreflectivitiesj were set at 0.5 in alI. cases. 
In order to improve resolution, the step function source was initiated at the surface 
of the outer sphere at time t = 0, rather than at the inner sphere, as in [Z]. For the 
case or” an albedo of 0.5. then, the (inward directed) source strength at the outer 
surface was set to SO,‘2 since only half of the incident radiation is reflected. The 
quantity soived for is the outward directed flux at the outer boundary, F(r). Borh 
spheres were broken down into 125 surface elements, and the region between therz: 
was broken down into 49 volume rings with a total of 560 volume elements. 
are given for a considerable spread in absorption coeficients. demonstrat 
versatility of the method. 

As can be seen from the tables, the code and analytic resuits vvere in good agrea- 
ment for ail the problems described above, given the relatively crude silbdivision of 
problem surfaces and volumes. Little deterioration is ev?dent in I e performance of 
the code for problems ranging from optically thick (s! = 1 E - 1 cm ~ “: to opticaliy 
thin (x = 1~ E - 5 cm -I). Unfortunately, because of the recent development of this 
method; quantitative techniques for estimating error are still unavailable. Moweser, 

TABLE III 

Radially Outivard directed flux F(i) at the Surface oC 
the Outermost of Two Concentric Spheres 

i. I = 1 x lG-‘jcm-’ ii. I’LGX IV’ 

F(f).S, r”lf)~.$j 
___~ 

Analytic Code I: I,, CGdS 

0.1665 l.Gl4 1.014 i.i1: l.C14 
0.2667 I.036 1.031 1.778 1.030 
0.3333 1.056 1.052 ?.ZZ? i.052 
G.4000 1.081 1.078 2.667 1.077 
C.5OGO 1.128 1.128 3.333 1.117 
11.6OOG i.186 i.181 1.000 i.179 
0.6667 1.231 1.225 1.44~ i.233 
0.7333 1.281 1.277 2.889 1.275 
0.8333 1.368 1.360 5.556 1.256 
:).9000 I.433 1.427 6.txlO 1.421 
i.0000 1.543 1.532 6.667 1.5’5 
P 0667 1.556 1.543 7.111 l.536 
1.1667 1.579 i.565 7.778 i.558 
1.2333 397 1.582 8.227 l.574 

?<ut~. Space between thz spheres is filled with medium oi absorption coekient a. Step function 
source directed outward nith strength S,erg/cm’-s at the surface of the o~~:er sphere rums m at :m~e 
I = 0. Times in terms of i, the light travel time across the outer spher: 
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iii. a = 1.0 x lO-3 iv. a=2.5x 10m3 v. G(=5.ox 10-I 

F(t):& F( t )i.So F( t j:‘s, 
t!t, Code t,!tL Code I/t, Code 

1.111 1.014 1.111 1.013 
1.778 1.029 1.778 1.028 
2.222 1.050 2.222 1.047 
2.667 1.074 2.667 1.068 
3.333 1.119 3.333 1.108 
4.000 1.167 3.000 1.148 
4.444 1.205 4.444 1.180 
4.889 1.251 4.889 1.217 
5.556 1.322 5.556 1.273 
6.000 1.378 6.000 1.316 
6.667 1.465 6.661 1.381 
7.111 1.474 7.111 1.388 
7.718 1.492 7.778 1.401 
8.222 1.505 a.222 1.410 

1.111 
1.778 
2.222 
2.661 
3.333 
4.000 
4.444 
4.889 
5.556 
6.000 
6.667 
7.111 
7.178 
8.222 

1.012 
1.025 
1.041 
1.059 
1.091 
1.121 
1.144 
1.170 
1.208 
1.236 
1.277 
1.281 
1.288 
1.294 

vi. a = 7.5 x lo-’ vii. r= 1.0x 10m2 viii. a = 2.5 x lo-’ 

F( t );.S, F( t j,!S,, F(r)i’& 
t.‘tL Code t;‘t, Code f/I, Code 

1.111 1.011 1.111 1.011 1.111 1.007 
1.778 1.023 1.778 1.021 1.778 1.012 
2.222 1.037 2.222 1.033 2.222 1.017 
2.667 1.052 2.667 1.045 2.667 1.021 
3.333 1.077 3.333 1.065 3.333 1.026 
4.000 1.100 4.000 1.083 4.000 1.029 
4.444 1.117 4.444 1.095 4.444 1.031 
4.889 1.135 4.889 1.108 4.889 1.033 
5.556 1.161 5.556 1.125 5.556 1.034 
6.000 1.179 6.000 1.137 6.000 1.035 
6.661 1.204 6.667 1.153 6.667 1.036 
7.111 1.206 7.111 1.154 7.111 1.036 
7.778 1.211 7.778 1.157 7.778 1.036 
8.222 1.214 8.222 1.158 8.222 1.036 

when one considers the relatively small number of elements into which the surface 
and volume space of the problem were divided, the limited resolution in time, and 
the fact that the approximations used to find the surface to surface view factors can 
be improved upon with little dificulty, it can be concluded that agreement of the 
code results with analytic solutions was excellent. 

The particular sample problems treated here were chosen mainly because similar 
problems are encountered relatively frequently in the literature. not because the 
code is limited to such simple geometries. As already noted, the code can solve 
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i/t. 

FIG. 8 Outward directed flux at surface of outer sphere for concentric sphere problem 

problems involving arbitrarily varying surface and volume radiative characrcris;icS 
and source functions. 

It is interesting to note that, for the first two geometries given in this paper. the 
v;alls did not participate at all except as a radiation sink. This demonstrates the fact 
that. since the geometric surfaces employed to specify a particular problem need not 
r-e-emit radiation. ihev can plav a role similar to that of non-reentrant boundary 
conditions in diffusion, P,,, SF:, and other radiation transport codes. !t is gvgri 
possible to speculate on the feasibility of “virtual” surfaces. which would neirher 
absorb nor emit radiation and would merely piay the roie of improv’nng resohttizr: 
a: some point or other in the medium where inrerestmg physics is taking place. 
Thus, it is quite conceivable that view factor codes may be applied to radiation 
transport problems involving no real surfaces at all. Furthermore, the code’s ab;?it:i 
to automaticaihy generate new rays through portions of the volume wkich the user 
has artificially refined for better resolution means that the sub ivision Gr 1hr encios- 

ing surface need not dictate the accuracy with which events going on within th: 
volume can be modeled. 

Run times !or the problems Listed were quite short, varying from around three to 
h-de minutes for convergence to be achieved on an IBM 3631 computer. This did 
not inciude the breakdown of the problem into elements, computation of view 
factors, and other repetitive tasks which can be done once and stored on d& for 
2. given geometry. 

The view factor technique described above is a new method of solving non-ljaiexr, 
time-dependent radiative transfer problems for two-dimensional geometries 
including participating media. The principles applied in the code can be exiencied 
without difficulty to three-dimensional problems, assuming the existence of snfficien? 
computer memory resources. The code can be used to so!ve fully tune-dependent 
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problems in cases where radiation is the dominant mode of energy transfer. It can 
also be used as an iterative method to provide time-independent solutions to the 
radiative transfer problem in cases where dominant physical phenomena are occur- 
ring on time scales significantly longer than that required for the radiation field to 
arrive at steady-state or near steady-state conditions. It is felt that the speed and 
geometric adaptability of codes employing the method will make them very com- 
petitive with alternative techniques, such as Monte Carlo, in handling radiative 
transfer problems with participating media. They are well suited to solution with 
machines employing parallel architecture, and ongoing improvements in computer 
memory capacities will enhance their capabilities in the near future, making the 
treatment of three-dimensional geometries the next logical step. 
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